Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.102
Filtrar
1.
J Biol Chem ; 300(3): 105744, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354781

RESUMO

Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.


Assuntos
DNA Mitocondrial , Hipocampo , Depressão Sináptica de Longo Prazo , Receptor Toll-Like 9 , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Hipocampo/metabolismo , Imunidade Inata , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Interferente Pequeno/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Células HEK293
2.
Sci Rep ; 14(1): 3834, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360971

RESUMO

Glaucoma is a prevalent cause of blindness globally, characterized by the progressive degeneration of retinal ganglion cells (RGCs). Among various factors, glutamate excitotoxicity stands out as a significant contributor of RGCs loss in glaucoma. Our study focused on Ripa-56 and its protective effect against NMDA-induced retinal damage in mice, aiming to delve into the potential underlying mechanism. The R28 cells were categorized into four groups: glutamate (Glu), Glu + Ripa-56, Ripa-56 and Control group. After 24 h of treatment, cell death was assessed by PI / Hoechst staining. Mitochondrial membrane potential changes, apoptosis and reactive oxygen species (ROS) production were analyzed using flow cytometry. The alterations in the expression of RIP-1, p-MLKL, Bcl-2, BAX, Caspase-3, Gpx4 and SLC7A11 were examined using western blot analysis. C57BL/6j mice were randomly divided into NMDA, NMDA + Ripa-56, Ripa-56 and control groups. Histological changes in the retina were evaluated using hematoxylin and eosin (H&E) staining. RGCs survival and the protein expression changes of RIP-1, Caspase-3, Bcl-2, Gpx4 and SLC7A11 were observed using immunofluorescence. Ripa-56 exhibited a significant reduction in the levels of RIP-1, p-MLKL, Caspase-3, and BAX induced by glutamate, while promoting the expression of Bcl-2, Gpx-4, and SLC7A1 in the Ripa-56-treated group. In our study, using an NMDA-induced normal tension glaucoma mice model, we employed immunofluorescence and H&E staining to observe that Ripa-56 treatment effectively ameliorated retinal ganglion cell loss, mitigating the decrease in retinal ganglion cell layer and bipolar cell layer thickness caused by NMDA. In this study, we have observed that Ripa-56 possesses remarkable anti- necroptotic, anti-apoptotic and anti-ferroptosis properties. It demonstrates the ability to combat not only glutamate-induced excitotoxicity in R28 cells, but also NMDA-induced retinal excitotoxicity in mice. Therefore, Ripa-56 could be used as a potential retinal protective agent.


Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Camundongos , Células Ganglionares da Retina/patologia , Caspase 3/metabolismo , N-Metilaspartato/metabolismo , Ácido Glutâmico/metabolismo , Proteína X Associada a bcl-2/metabolismo , Camundongos Endogâmicos C57BL , Retina/patologia , Apoptose , Glaucoma/patologia
3.
Phytomedicine ; 126: 155452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422650

RESUMO

BACKGROUND: Depression is a common and recurrent neuropsychiatric disorder. Recent studies have shown that the N-methyl-d-aspartate (NMDA) receptor (NMDAR) is involved in the pathophysiology of depression. Previous studies have found that Kaji-ichigoside F1 (KF1) has a protective effect against NMDA-induced neurotoxicity. However, the antidepressant mechanism of KF1 has not been confirmed yet. PURPOSE: In the present study, we aimed to evaluate the rapid antidepressant activity of KF1 and explore the underlying mechanism. STUDY DESIGN: First, we explored the effect of KF1 on NMDA-induced hippocampal neurons and the underlying mechanism. Second, depression was induced in C57BL/6 mice via chronic unpredictable mild stress (CUMS), and the immediate and persistent depression-like behavior was evaluated using the forced swimming test (FST) after a single administration of KF1. Third, the contributions of NMDA signaling to the antidepressant effect of KF1 were investigated using pharmacological interventions. Fourth, CUMS mice were treated with KF1 for 21 days, and then their depression-like behaviors and the underlying mechanism were further explored. METHODS: The FST was used to evaluate immediate and persistent depression-like behavior after a single administration of KF1 with or without NMDA pretreatment. The effect of KF1 on depressive-like behavior was investigated in CUMS mice by treating them with KF1 once daily for 21 days through the sucrose preference test, FST, open field test, and tail suspension test. Then, the effects of KF1 on the morphology and molecular and functional phenotypes of primary neuronal cells and hippocampus of mice were investigated by hematoxylin-eosin staining, Nissl staining, propidium iodide staining, TUNEL staining, Ca2+ imaging, JC-1 staining, ELISA, immunofluorescence analysis, RT-PCR, and Western blot. RESULTS: KF1 could effectively improve cellular viability, reduce apoptosis, inhibit the release of LDH and Ca2+, and increase the mitochondrial membrane potential and the number of dendritic spines numbers in hippocampal neurons. Moreover, behavioral tests showed that KF1 exerted acute and sustained antidepressant-like effects by reducing Glu-levels and ameliorating neuronal damage in the hippocampus. Additionally, in vivo and in vitro experiments revealed that PSD95, Syn1, α-amino-3­hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and brain-derived neurotrophic factor (BDNF) were upregulated at the protein level, and BDNF and AMPA were upregulated at the mRNA level. NR1 and NR2A showed the opposite trend. CONCLUSION: These results confirm that KF1 exerts rapid antidepressant effects mainly by activating the AMPA-BDNF-mTOR pathway and inhibiting the NMDAR-CaMKIIα pathway. This study serves as a new reference for discovering rapid antidepressants.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Camundongos , Animais , Depressão/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças
4.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176904

RESUMO

NMDA receptors (NMDARs) modulate glutamatergic excitatory tone in the brain via two complementary modalities: a phasic excitatory postsynaptic current and a tonic extrasynaptic modality. Here, we demonstrated that the tonic NMDAR-current (I NMDA) mediated by NR2A-containing NMDARs is an efficient biosensor detecting the altered ambient glutamate level in the supraoptic nucleus (SON). I NMDA of magnocellular neurosecretory cells (MNCs) measured by nonselective NMDARs antagonist, AP5, at holding potential (V holding) -70 mV in low concentration of ECF Mg2+ ([Mg2+]o) was transiently but significantly increased 1-week post induction of a DOCA salt hypertensive model rat which was compatible with that induced by a NR2A-selective antagonist, PEAQX (I PEAQX) in both DOCA-H2O and DOCA-salt groups. In agreement, NR2B antagonist, ifenprodil, or NR2C/D antagonist, PPDA, did not affect the holding current (I holding) at V holding -70 mV. Increased ambient glutamate by exogenous glutamate (10 mM) or excitatory amino acid transporters (EAATs) antagonist (TBOA, 50 mM) abolished the I PEAQX difference between two groups, suggesting that attenuated EAATs activity increased ambient glutamate concentration, leading to the larger I PEAQX in DOCA-salt rats. In contrast, only ifenprodil but not PEAQX and PPDA uncovered I NMDA at V holding +40 mV under 1.2 mM [Mg2+]o condition. I ifenprodil was not different in DOCA-H2O and DOCA-salt groups. Finally, NR2A, NR2B, and NR2D protein expression were not different in the SON of the two groups. Taken together, NR2A-containing NMDARs efficiently detected the increased ambient glutamate concentration in the SON of DOCA-salt hypertensive rats due to attenuated EAATs activity.


Assuntos
Acetato de Desoxicorticosterona , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Ácido Glutâmico/metabolismo , Núcleo Supraóptico/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia
5.
Mol Biol Cell ; 35(3): ar43, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294869

RESUMO

Synaptic plasticity is a process that shapes neuronal connections during neurodevelopment and learning and memory. Autophagy is a mechanism that allows the cell to degrade its unnecessary or dysfunctional components. Autophagosomes appear at dendritic spines in response to plasticity-inducing stimuli. Autophagy defects contribute to altered dendritic spine development, autistic-like behavior in mice, and neurological disease. While several studies have explored the involvement of autophagy in synaptic plasticity, the initial steps of the emergence of autophagosomes at the postsynapse remain unknown. Here, we demonstrate a postsynaptic association of autophagy-related protein 9A (Atg9A), known to be involved in the early stages of autophagosome formation, with Rab11, a small GTPase that regulates endosomal trafficking. Rab11 activity was necessary to maintain Atg9A-positive structures at dendritic spines. Inhibition of mTOR increased Rab11 and Atg9A interaction and increased the emergence of LC3 positive vesicles, an autophagosome membrane-associated protein marker, in dendritic spines when coupled to NMDA receptor stimulation. Dendritic spines with newly formed LC3+ vesicles were more resistant to NMDA-induced morphologic change. Rab11 DN overexpression suppressed appearance of LC3+ vesicles. Collectively, these results suggest that initiation of autophagy in dendritic spines depends on neuronal activity and Rab11a-dependent Atg9A interaction that is regulated by mTOR activity.


Assuntos
Espinhas Dendríticas , N-Metilaspartato , Animais , Camundongos , Autofagossomos/metabolismo , Autofagia , Espinhas Dendríticas/metabolismo , N-Metilaspartato/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Mol Pain ; 20: 17448069241230258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246915

RESUMO

The anterior cingulate cortex (ACC) is a key cortical area for pain perception, emotional fear and anxiety. Cortical excitation is thought to be the major mechanism for chronic pain and its related emotional disorders such as anxiety and depression. GluN2B (or called NR2B) containing NMDA receptors play critical roles for such excitation. Not only does the activation of GluN2B contributes to the induction of the postsynaptic form of LTP (post-LTP), long-term upregulation of GluN2B subunits through tyrosine phosphorylation were also detected after peripheral injury. In addition, it has been reported that presynaptic NMDA receptors may contribute to the modulation of the release of glutamate from presynaptic terminals in the ACC. It is believed that inhibiting subtypes of NMDA receptors and/or downstream signaling proteins may serve as a novel therapeutic mechanism for future treatment of chronic pain, anxiety, and depression.


Assuntos
Dor Crônica , Giro do Cíngulo , Humanos , Giro do Cíngulo/metabolismo , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Dor Crônica/metabolismo , Sinapses/metabolismo , Potenciação de Longa Duração/fisiologia
7.
Metab Brain Dis ; 39(1): 67-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966694

RESUMO

Brain damage caused by ethanol abuse may lead to permanent damage, including severe dementia. The aim of this study was to investigate the effects of ginger powder on ethanol-induced cognitive disorders by examining oxidative damage and inflammation status, and the gene expression of N-methyl-D-aspartate (NMDA) and γ-Aminobutyric acid (GABA)-A receptors in the hippocampus of male rats. 24 adult male Sprague-Dawley rats were allocated randomly to four groups as follows control, ethanol (4g/kg/day, by gavage), ginger (1g/kg/day, by gavage), and ginger-ethanol. At the end of the study, memory and learning were evaluated by the shuttle box test. Moreover, to explore mechanisms involved in ethanol-induced cognitive impairment and the protective effect of ginger, the expression of Nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), NMDA receptor, and GABA-A receptor was measured along with inflammatory and oxidative biomarkers in the hippocampus tissue. The results showed that ethanol could induce cognitive impairment in the ethanol group, while pretreatment with ginger could reverse it. The gene expression of the NF-κB/ Tumor necrosis factor (TNF)-α/Interleukin (IL)-1ß pathway and NMDA and GABA-A receptors significantly increased in the ethanol group compared to the control group. While pretreatment with ginger could significantly improve ethanol-induced cognitive impairment through these pathways in the ginger-ethanol group compared to the ethanol group (P < 0.05). It can be concluded that ginger powder could ameliorate ethanol-induced cognitive impairment by modulating the expression of NMDA and GABA-A receptors and inhibiting oxidative damage and the NF-κB/TNF-α/IL-1ß pathway in the rat hippocampus.


Assuntos
Disfunção Cognitiva , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Etanol/toxicidade , NF-kappa B/metabolismo , Receptores de GABA/metabolismo , Pós/metabolismo , Pós/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Psychopharmacology (Berl) ; 241(1): 75-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715015

RESUMO

BACKGROUND: In our previous study, we showed simvastatin exerts an antidepressant effect and inhibits neuroinflammation. Given the role of synaptic impairment in depression development, we investigate the effect of simvastatin on synaptic plasticity in depression and the related mechanisms. METHODS: Electrophysiological analysis, Golgi staining, and transmission electron microscope were performed to analyze the effect of simvastatin on synaptic impairment in depression. In addition, the localization and reactivity of N-methyl-D-aspartate receptor (NMDAR) subunits and the downstream signaling were investigated to explore the mechanism of simvastatin's effect on synaptic plasticity. RESULTS: Simvastatin ameliorated the reduction of the magnitude of long-term potentiation (LTP) in Schaffer collateral-CA1, restored hippocampal dendritic spine density loss, improved the number of spine synapses, reversed the reduction in BrdU-positive cells in chronic mild stress (CMS)-induced depressed mice, and ameliorated NMDA-induced neurotoxicity in hippocampal neurons. Dysfunction of NMDAR activity in the hippocampus is associated with depression. Simvastatin treatment reversed the surface expression and phosphorylation changes of NMDAR subunits in NMDA-treated hippocampal neurons and depressed mice. In addition, simvastatin further increased the levels of mature BDNF, activating TrkB-Akt-mTOR signaling, which is critical for synaptic plasticity. CONCLUSIONS: These findings suggest that simvastatin can improve the dysfunction of NMDAR and ameliorate hippocampal synaptic plasticity impairment in depressed mice.


Assuntos
N-Metilaspartato , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Plasticidade Neuronal/fisiologia , Hipocampo , Potenciação de Longa Duração , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
9.
Neurochem Res ; 49(2): 363-378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814133

RESUMO

Cannabidiol (CBD) is a promising neurological agent with potential beneficial effects on memory and cognitive function. The combination of CBD and topiramate in the treatment of some neurological diseases has been of great interest. Since Topiramate-induced memory loss is a major drawback of its clinical application and the overall effect of the combination of CBD and topiramate on memory is still unclear, here we investigated the effect of CBD on topiramate-induced memory loss and the underlying molecular mechanisms. A one trial step-through inhibitory test was used to evaluate memory consolidation in rats. Moreover, the role of N-methyl-D-aspartate receptors (NMDARs) in the combination of CBD and topiramate in memory consolidation was evaluated through the intra-CA1 administration of MK-801 and NMDA. Western blot analysis was used to evaluate variations in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding protein (pCREB)/CREB ratio in the prefrontal cortex (PFC) and hippocampus (HPC). While the intraperitoneal (i.p.) administration of topiramate (50, 75, and 100 mg/kg) significantly reduced inhibitory time latency, the i.p. administration of CBD (20 and 40 mg/kg) could effectively reverse these effects. Similarly, the sub-effective doses of NMDA plus CBD (10 mg/kg) could improve the topiramate-induced memory loss along with an enhancement in BDNF and pCREB expression in the PFC and HPC. Contrarily, the administration of sub-effective doses of the NMDAR antagonist (MK-801) diminished the protective effects of CBD (20 mg/kg) on topiramate-induced memory loss associated with decreased BDNF and pCREB levels in the PFC and HPC. These findings suggest that CBD can improve topiramate-induced memory impairment, partially by the NMDARs of the PFC and HPC, possibly regulated by the CREB/BDNF signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Canabidiol , Ratos , Animais , Topiramato/uso terapêutico , Topiramato/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Maleato de Dizocilpina/farmacologia , Maleato de Dizocilpina/uso terapêutico , Maleato de Dizocilpina/metabolismo , N-Metilaspartato/metabolismo , Hipocampo/metabolismo , Transdução de Sinais , Córtex Pré-Frontal/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Amnésia/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
10.
Neuropharmacology ; 245: 109831, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160873

RESUMO

The anterior cingulate cortex (ACC) Cg1 (24b) area modulates glutamate-mediated unconditioned fear and antinociception organised by hypothalamus. However, it remains unknown whether 24b area also modulates these latter defensive responses through connections with the dorsal periaqueductal grey matter (dPAG), a midbrain structure implicated in the genesis of innate fear-induced defence. The aim of this work is to examine the correlation between the behavioural effects of intra-ACC microinjections of vehicle, NMDA (1 nmol) or lidocaine (2%) with Fos protein expression and nitrergic activity in the dPAG of male C57BL/6 mice that were threatened by snakes. In addition, the 24b area-dPAG pathways were also characterised by neural tract tracing procedures. Finally, the effect of dPAG pretreatment with the neuronal nitric oxide synthase inhibitor N(omega)-propyl-l-arginine (NPLA; 0.2, 0.4 or 0.8 nmol) 10 min before 24b area treatment with NMDA on behavioural and nociceptive responses of threatened mice was studied. The activation of 24b area N-methyl-d-aspartic acid receptors facilitated escape and freezing rather than risk assessment, and enhanced Fos expression and nitrite levels in dPAG, while lidocaine decreased escape and risk assessment as well as Fos and nitrergic activity in dPAG. In addition, dPAG pretreatment with NPLA suppressed intra-24b NMDA-facilitated panicogenic effects while increased nociception. Infusions of an antegrade neurotracer into 24b area showed axonal fibres surrounding both dorsomedial and dorsolateral PAG perikarya. Neurons were identified in 24b area after deposits of a retrograde neurotracer into dPAG. Our findings suggest that the ACC/24b area modulates innate defensive responses through the recruitment of dPAG nitrergic neurons.


Assuntos
Óxido Nítrico , Substância Cinzenta Periaquedutal , Camundongos , Masculino , Animais , Óxido Nítrico/metabolismo , Giro do Cíngulo/metabolismo , N-Metilaspartato/metabolismo , Camundongos Endogâmicos C57BL , Lidocaína/farmacologia , Microinjeções
11.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069032

RESUMO

Exposure to heavy metals, such as vanadium, poses an ongoing environmental and health threat, heightening the risk of neurodegenerative disorders. While several compounds have shown promise in mitigating vanadium toxicity, their efficacy is limited. Effective strategies involve targeting specific subunits of the NMDA receptor, a glutamate receptor linked to neurodegenerative conditions. The potential neuroprotective effects of ZA-II-05, an NMDA receptor antagonist, against vanadium-induced neurotoxicity were explored in this study. Organotypic rat hippocampal slices, and live mice, were used as models to comprehensively evaluate the compound's impact. Targeted in vivo fluorescence analyses of the hippocampal slices using propidium iodide as a marker for cell death was utilized. The in vivo study involved five dams, each with eight pups, which were randomly assigned to five experimental groups (n = 8 pups). After administering treatments intraperitoneally over six months, various brain regions were assessed for neuropathologies using different immunohistochemical markers. High fluorescence intensity was observed in the hippocampal slices treated with vanadium, signifying cell death. Vanadium-exposed mice exhibited demyelination, microgliosis, and neuronal cell loss. Significantly, treatment with ZA-II-05 resulted in reduced cellular death in the rat hippocampal slices and preserved cellular integrity and morphological architecture in different anatomical regions, suggesting its potential in countering vanadium-induced neurotoxicity.


Assuntos
Síndromes Neurotóxicas , Receptores de N-Metil-D-Aspartato , Ratos , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , Vanádio/toxicidade , Vanádio/metabolismo , Morte Celular , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Hipocampo/metabolismo
12.
Biomolecules ; 13(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136653

RESUMO

The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1ß, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS.


Assuntos
Transtorno Depressivo Maior , Resiliência Psicológica , Camundongos , Animais , Depressão/genética , Depressão/psicologia , Anedonia/fisiologia , Transtorno Depressivo Maior/metabolismo , Dinâmica Mitocondrial , N-Metilaspartato/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos , Sacarose/metabolismo , Adenosina Trifosfatases/metabolismo , Expressão Gênica
13.
Neuroscience ; 535: 88-98, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37925051

RESUMO

The benefits of aerobic exercises for memory are known, but studies of strength training on memory consolidation are still scarce. Exercise stimulates the release of metabolites and myokines that reaching the brain stimulate the activation of NMDA-receptors and associated pathways related to cognition and synaptic plasticity. The aim of the present study was to investigate whether the acute strength exercise could promote the consolidation of a weak memory. We also investigated whether the effects of strength exercise on memory consolidation and on the BDNF and synapsin I levels depends on the activation of NMDA-receptors. Male Wistar rats were submitted to strength exercise session after a weak training in contextual fear conditioning paradigm to investigate the induction of memory consolidation. To investigate the participation of NMDA-receptors animals were submitted to contextual fear training and strength exercise and infused with MK801 or saline immediately after exercise. To investigate the participation of NMDA-receptors in BDNF and synapsin I levels the animals were submitted to acute strength exercise and infused with MK801 or saline immediately after exercise (in absence of behavior experiment). Results showed that exercise induced the consolidation of a weak memory and this effect was dependent on the activation of NMDA-receptors. The hippocampal overexpression of BDNF and Synapsin I through exercise where NMDA-receptors dependent. Our findings showed that strength exercise strengthened fear memory consolidation and modulates the overexpression of BDNF and synapsin I through the activation of NMDA-receptors dependent signaling pathways.


Assuntos
Consolidação da Memória , N-Metilaspartato , Ratos , Animais , Masculino , N-Metilaspartato/metabolismo , Consolidação da Memória/fisiologia , Ratos Wistar , Maleato de Dizocilpina/farmacologia , Sinapsinas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Medo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958669

RESUMO

N-methyl-D-aspartate (NMDA) receptors are inhibited by many amidine and guanidine compounds. In this work, we studied the mechanisms of their inhibition by sepimostat-an amidine-containing serine protease inhibitor with neuroprotective properties. Sepimostat inhibited native NMDA receptors in rat hippocampal CA1 pyramidal neurons with IC50 of 3.5 ± 0.3 µM at -80 mV holding voltage. It demonstrated complex voltage dependence with voltage-independent and voltage-dependent components, suggesting the presence of shallow and deep binding sites. At -80 mV holding voltage, the voltage-dependent component dominates, and we observed pronounced tail currents and overshoots evidencing a "foot-in-the-door" open channel block. At depolarized voltages, the voltage-independent inhibition by sepimostat was significantly attenuated by the increase of agonist concentration. However, the voltage-independent inhibition was non-competitive. We further compared the mechanisms of the action of sepimostat with those of structurally-related amidine and guanidine compounds-nafamostat, gabexate, furamidine, pentamidine, diminazene, and DAPI-investigated previously. The action of all these compounds can be described by the two-component mechanism. All compounds demonstrated similar affinity to the shallow site, which is responsible for the voltage-independent inhibition, with binding constants in the range of 3-30 µM. In contrast, affinities to the deep site differed dramatically, with nafamostat, furamidine, and pentamidine being much more active.


Assuntos
Pentamidina , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Pentamidina/metabolismo , Guanidinas/farmacologia , Guanidinas/metabolismo , Hipocampo/metabolismo , Células Cultivadas , N-Metilaspartato/metabolismo
15.
Chin J Physiol ; 66(5): 326-334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929343

RESUMO

Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder, and there is an association between it and the development of cardiovascular disease. The aim of this study was to explore whether there is a glutamatergic pathway connecting the medial habenula (MHb) with the rostral ventrolateral medulla (RVLM) that is involved in the regulation of cardiovascular function in a rat model of PTSD. Vesicular glutamate transporter 2 (VGLUT2)-positive neurons in the MHb region were retrogradely labeled with FluoroGold (FG) by the double-labeling technique of VGLUT2 immunofluorescence and FG retrograde tracing. Rats belonging to the PTSD model group were microinjected with artificial cerebrospinal fluid (ACSF) or kynurenic acid (KYN; a nonselective glutamate receptor blocker) into their RVLM. Subsequently, with electrical stimulation of MHb, the discharge frequency of the RVLM neurons, heart rate, and blood pressure were found to be significantly increased after microinjection of ACSF using an in vivo multichannel synchronous recording technology; however, this effect was inhibited by injection of KYN. The expression of N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits was significantly increased in RVLM of PTSD model rats analyzed by the Western blotting technique. These findings suggest that there may be a glutamatergic pathway connection between MHb and RVLM and that this pathway may be involved in the regulation of cardiovascular function in the PTSD model rats, by acting on NMDA and AMPA receptors in the RVLM.


Assuntos
Habenula , Transtornos de Estresse Pós-Traumáticos , Humanos , Ratos , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Habenula/metabolismo , Bulbo/metabolismo , Pressão Sanguínea , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia
16.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834353

RESUMO

Autoantibodies against NMDA and AMPA receptors have been identified in the central nervous system of patients suffering from brain disorders characterized by neurological and psychiatric symptoms. It has been demonstrated that these autoantibodies can affect the functions and/or the expression of the targeted receptors, altering synaptic communication. The importance to clarify, in preclinical models, the molecular mechanisms involved in the autoantibody-mediated effects has emerged in order to understand their pathogenic role in central disorders, but also to propose new therapeutic approaches for preventing the deleterious central consequences. In this review, we describe some of the available preclinical literature concerning the impact of antibodies recognizing NMDA and AMPA receptors in neurons. This review discusses the cellular events that would support the detrimental roles of the autoantibodies, also illustrating some contrasting findings that in our opinion deserve attention and further investigations before translating the preclinical observations to clinic.


Assuntos
N-Metilaspartato , Receptores de AMPA , Humanos , Receptores de AMPA/metabolismo , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios/metabolismo , Autoanticorpos
17.
J Neurosci ; 43(46): 7730-7744, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37726169

RESUMO

NR2D subunit-containing NMDA receptors (NMDARs) gradually disappear during brain maturation but can be recruited by pathophysiological stimuli in the adult brain. Here, we report that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication recruited NR2D subunit-containing NMDARs that generated an Mg2+-resistant tonic NMDA current (INMDA) in dopaminergic (DA) neurons in the midbrain of mature male mice. MPTP selectively generated an Mg2+-resistant tonic INMDA in DA neurons in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA). Consistently, MPTP increased NR2D but not NR2B expression in the midbrain regions. Pharmacological or genetic NR2D interventions abolished the generation of Mg2+-resistant tonic INMDA in SNpc DA neurons, and thus attenuated subsequent DA neuronal loss and gait deficits in MPTP-treated mice. These results show that extrasynaptic NR2D recruitment generates Mg2+-resistant tonic INMDA and exacerbates DA neuronal loss, thus contributing to MPTP-induced Parkinsonism. The state-dependent NR2D recruitment could be a novel therapeutic target for mitigating cell type-specific neuronal death in neurodegenerative diseases.SIGNIFICANCE STATEMENT NR2D subunit-containing NMDA receptors (NMDARs) are widely expressed in the brain during late embryonic and early postnatal development, and then downregulated during brain maturation and preserved at low levels in a few regions of the adult brain. Certain stimuli can recruit NR2D subunits to generate tonic persistent NMDAR currents in nondepolarized neurons in the mature brain. Our results show that MPTP intoxication recruits NR2D subunits in midbrain dopaminergic (DA) neurons, which leads to tonic NMDAR current-promoting dopaminergic neuronal death and consequent abnormal gait behavior in the MPTP mouse model of Parkinson's disease (PD). This is the first study to indicate that extrasynaptic NR2D recruitment could be a target for preventing neuronal death in neurodegenerative diseases.


Assuntos
Doença de Parkinson , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Substância Negra/metabolismo
18.
Mol Neurobiol ; 60(12): 7222-7237, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542647

RESUMO

Glaucoma is a leading cause of permanent blindness worldwide and is characterized by neurodegeneration linked to progressive retinal ganglion cell (RGC) death, axonal damage, and neuroinflammation. Glutamate excitotoxicity mediated through N-methyl-D-aspartate (NMDA) receptors plays a crucial role in glaucomatous RGC loss. Sphingosine 1-phosphate receptors (S1PRs) are important mediators of neurodegeneration and neuroinflammation in the brain and the retina. Siponimod is an immunomodulatory drug for multiple sclerosis and is a selective modulator of S1PR subtypes 1 and 5 and has been shown to have beneficial effects on the central nervous system (CNS) in degenerative conditions. Our previous study showed that mice administered orally with siponimod protected inner retinal structure and function against acute NMDA excitotoxicity. To elucidate the molecular mechanisms behind these protective effects, we investigated the inflammatory pathways affected by siponimod treatment in NMDA excitotoxicity model. NMDA excitotoxicity resulted in the activation of glial cells coupled with upregulation of the inflammatory NF-kB pathway and increased expression of TNFα, IL1-ß, and IL-6. Siponimod treatment significantly reduced glial activation and suppressed the pro-inflammatory pathways. Furthermore, NMDA-induced activation of NLRP3 inflammasome and upregulation of neurotoxic inducible nitric oxide synthase (iNOS) were significantly diminished with siponimod treatment. Our data demonstrated that siponimod induces anti-inflammatory effects via suppression of glial activation and inflammatory singling pathways that could protect the retina against acute excitotoxicity conditions. These findings provide insights into the anti-inflammatory effects of siponimod in the CNS and suggest a potential therapeutic strategy for neuroinflammatory conditions.


Assuntos
Glaucoma , N-Metilaspartato , Camundongos , Animais , N-Metilaspartato/metabolismo , Doenças Neuroinflamatórias , Retina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Glaucoma/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo
19.
Cells ; 12(15)2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37566090

RESUMO

Na/K-ATPase maintains transmembrane ionic gradients and acts as a signal transducer when bound to endogenous cardiotonic steroids. At subnanomolar concentrations, ouabain induces neuroprotection against calcium overload and apoptosis of neurons during excitotoxic stress. Here, the role of lipid rafts in interactions between Na/K-ATPase, sodium-calcium exchanger (NCX), and N-methy-D-aspartate receptors (NMDARs) was investigated. We analyzed 0.5-1-nanometer ouabain's effects on calcium responses and miniature post-synaptic current (mEPSCs) frequencies of cortical neurons during the action of NMDA in rat primary culture and brain slices. In both objects, ouabain attenuated NMDA-evoked calcium responses and prevented an increase in mEPSC frequency, while the cholesterol extraction by methyl-ß-cyclodextrin prevented the effects. The data support the conclusions that (i) ouabain-induced inhibition of NMDA-elicited calcium response involves both pre- and post-synapse, (ii) the presence of astrocytes in the tripartite synapse is not critical for the ouabain effects, which are found to be similar in cell cultures and brain slices, and (iii) ouabain action requires the integrity of cholesterol-rich membrane microdomains in which the colocalization and functional interaction of NMDAR-transferred calcium influx, calcium extrusion by NCX, and Na/K-ATPase modulation of the exchanger occur. This regulation of the molecules by cardiotonic steroids may influence synaptic transmission, prevent excitotoxic neuronal death, and interfere with the pharmacological actions of neurological medicines.


Assuntos
Cálcio , Ouabaína , Ratos , Animais , Ouabaína/farmacologia , Cálcio/metabolismo , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Colesterol/metabolismo , Adenosina Trifosfatases/metabolismo
20.
Cells ; 12(13)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37443726

RESUMO

In the cerebral cortex, glutamate activates NMDA receptors (NMDARs), localized in noradrenergic neurons, inducing noradrenaline release that may have a permissive effect on glutamatergic transmission, and therefore, on the modulation of long-term plasticity. ATP is co-released with noradrenaline, and with its metabolites (ADP and adenosine) is involved in the purinergic modulation of electrically-evoked noradrenaline release. However, it is not known if noradrenaline release evoked by activation of NMDARs is also under purinergic modulation. The present study aimed to investigate and to characterize the purinergic modulation of noradrenaline release evoked by NMDARs. Stimulation of rat cortical slices with 30 µM NMDA increased noradrenaline release, which was inhibited by ATP upon metabolization into ADP and adenosine and by the selective agonists of A1 and A2A receptors, CPA and CGS2680, respectively. It was also inhibited by UTP and UDP, which are mainly released under pathophysiological situations. Characterization of the effects mediated by these compounds indicated the involvement of P2Y1, P2Y6, A1 and A2A receptors. It is concluded that, in the rat brain cortex, NMDA-evoked noradrenaline release is modulated by several purinergic receptors that may represent a relevant mechanism to regulate the permissive effect of noradrenaline on NMDA-induced neuroplasticity.


Assuntos
N-Metilaspartato , Norepinefrina , Ratos , Animais , Norepinefrina/farmacologia , Norepinefrina/metabolismo , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Ratos Wistar , Adenosina/metabolismo , Córtex Cerebral/metabolismo , Trifosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Difosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...